Efficient Monitoring for Planetary Rovers

نویسندگان

  • Vandi Verma
  • Geoff Gordon
  • Reid Simmons
چکیده

Planetary rovers operate in environments where human intervention is expensive, slow, unreliable, or impossible. It is therefore essential to monitor the behavior of these robots so that contingencies may be addressed before they result in catastrophic failures. This monitoring needs to be efficient since there is limited computational power available on rovers. We propose an efficient particle filter for monitoring faults that combines the Unscented Kalman Filter (UKF) [7] and the Variable Resolution Particle Filter (VRPF) [16]. We begin by using the UKF to obtain an improved proposal distribution for a particle filter which tracks discrete fault variables as part of its state space. This requires computing an unscented transform for every particle and every possible discrete transition to a fault or nominal state at each instant in time. Since there are potentially a large number of faults that may occur at any instant, this approach does not scale well. We use the VRPF to address this concern. The VRPF tracks abstract states that may represent single states or sets of states. There are many fewer transitions between states when they are represented in abstraction. We show that the VRPF in conjunction with a UKF proposal improves performance and may potentially be used in large state spaces. Experimental results show a significant improvement in efficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-Fidelity Planetary Route Determination Using Computationally Efficient Monocular Fisheye Odometry and Sun Compass

Today’s planetary robotic exploration is carried out by large, lumbering rovers. Due to the expense of such rovers, the resulting missions are risk averse. Small, high-cadence, minimalist rovers are poised to break new ground by expanding space exploration capabilities. Whether by decreasing overall mission costs or enabling symbiotic exploration among multiple low-cost rovers, these minimalist...

متن کامل

Advances in Simulation of Planetary Wheeled Mobile Robots

Ever since the Sojourner rover of the United States landed on Mars in 1997 (Jet Propulsion Laboratory [JPL], a), there has been an upsurge in the exploration of planets using wheeled mobile robots (WMRs or rovers). The twin rovers that followed, Spirit and Opportunity, have endured many years of activity on Mars and have made many significant discoveries (JPL, b). Several other new missions are...

متن کامل

Multi-Sensor Terrain Estimation for Planetary Rovers

Future planetary exploration missions will require rovers to perform difficult tasks in rough terrain, with limited human supervision. Knowledge of terrain physical characteristics would allow a rover to adapt its control and planning strategies to maximize its effectiveness. This paper describes recent and current work at MIT in the area of terrain estimation and sensing. A method for on-line ...

متن کامل

Improved Traversal for Planetary Rovers through Forward Acquisition of Terrain Trafficability *

Current operations of planetary rovers, especially the planning and execution of traverse operations, rely on human analysis and estimation of non-geometric hazards based on images captured by the rover. Despite the use of advanced path planning algorithms capable of avoiding obstacles, this limits daily traverse distances. This paper presents a system concept for planetary rovers capable of sa...

متن کامل

Efficient Sensor/Model Based On-Line Collision Detection for Planetary Manipulators

Safeguarding is a crucial need for manipulator operations on planetary rovers. At the same time, the computing environment on a Mars rover is extremely limited, which necessitates a highly efficient collision checking algorithm. We present such an algorithm that uses the Oriented Bounding Box (OBB) and a new primitive called the Oriented Bounding Prism (OBP) to detect potential selfcollisions a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003